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PLANE GRATING SYSTEMS: GENERAL —,—\J '7'"
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COLLIMATED LIGHT SX700 (CLSX700) '

Petersen 1982 %
Follath 1997 > PootRer .
p 'ﬁ f
Exit slit
Source e Plane grating

Collimator

Plane mirror

» Thisisthe current and deservedly the most popular of many versions (used in ALS MES project)

» Theoriginal (Petersen) held fixed focus by maintaining C = COSP/cosa =2.25
and introduced the still-essential mechanism for positioning the plane mirror (next dide)

» CLSX700 has constant focus position irrespective of the value of c;; which therefore becomes a user-
controlled variable

» This can be used to track the efficiency maximum, suppress high orders or maximize resolution

 Sagittal focusing mirrors reduce sensitivity to manufacturing errors (Jark 1992) see next dlide, other
types were paraboloid (Kunz 1968), ellipsoid (Petersen 1982), elliptical cylinder (Nyholm 1985) or
sphere (Padmore 1989)
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THE ZEISSMIRROR MECHANISM P—\I "

.
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e Raimer 19

e Pimpale 1¢ 45

This mechanism, patented by BESSY and Zeiss, isamajor reason for the success of this design

Theideaisto find a point about which to rotate the mirror such that the central ray always hitsthe
grating pole - this can be done with only afew microns error

The easy and less accurate solution is continue the mirror surfaces at maximum and minimum angle to
intersect the y axis and take the average of the two points - thiswill be near A (0, D/2) for small angles

More accurate solutions (Pimpale 1991) are close to B (0, 3D/2) - best solutions are good within 10um
If D £ 8 cm and the grazing angle is less than 10° - B itself isagood solution to within 10 umif D £ 3
cm and the grazing angleis less than 10°
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SOME WORKING CURVES FOR PGM’S _A%
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Fig. 1. Working curves for plane-grating monochromators with 3000ines/mm: (A} grating rodation st constant deviation |2| +
ifl =260 = constant in inside diffractnon onder; (A") the same but cutside diffraction order; (B fix-focus mode, oy = 2.25; (B') fix-focus
mode, oy = 1/2.25.
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ACCESSIBLE RANGESOF THE SCAN PARAMETERS % '1
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CONTRIBUTIONSTO THE SX700 RESOLUTION 7] ¥

Follath 1997, 2001
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RESOL UTION CONTRIBUTIONS FOR A BESSY PGM ““““~] *

Follath 2001

BESSY U125/1-PGM
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WORKING CURVESFOR c4=2.25 ETC

Petersen 1986
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BESSY CLSX700'S: SUMMARY ceceed) '“\

Table 1
Operational collimated plane grating monochromators at BESSY 11
Beamline Energy range Resolving Dedication
eV power
U125/1-PGM 15-604) L0, 000" low energy beamline
UE56/1-PGM 61500 OG0 circularly polarised, two chopped beams
UES6/2-PGMI ™ 110.000" ”
UE3S6 /2-PGM2 110.000
U41-PGM 170=-2000 6.0007 high energy. high flux, small focus
L49/1-PGM 130-2000 10.000" PEEM
U49 /2. PGM2 &0-2000 10.000" PEEM
UI80-PGM 30-1900° 30.000" reflectometry, high spectral purity

“Aligned and determined with helium (2 — 1;)-profile.

" Aligned and determined with N, : 1s — =* core hole absorption.

“Wiggler mode of the insertion device.
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BESSY U125/1-PGM BEAM LINE
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BESSY PGM RESOLUTION DEMONSTRATION '""

Picture from R. Follath, BESSY
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Doppler width 0.4 meV

M onochromator
contribution 0.65 meV

Resolving power=1.0x10°

Rotation increments
- grating: 17 nrad
- mirror: 9 nrad

Measured with 1200/mm
grating at ¢;; =10 to 12
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BESSY PGM'S: RESOLUTION SUMMARY cerees) '7'"
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mechanical limits

Parameters for this study:

150 lines/mm 25nm groove depth
(low dispersion)

1200 liness'mm 6nm groove depth
(high dispersion)
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2000eV
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efficiency
with
shallow
grooves

mechanical limits

(operating from 75 eV to 800eV)

(operating from 300 eV to 2000eV)
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OPTICAL PATH FUNCTION: VARIED-LINE-SPACING GRATINGS *27fff n."

HERKELEY LAB ]

Now the groove spacing d(w) and number n(w) are functions of w and are also expressed as power series

¥ .
d(w) = d0(1+vlw+ v2vv2 + ) n(w) = Q oW

i=1
So the optical path function becomes
_ 0 ijk ., 8 i (ﬂ( mA.
F= a Cijk((},,r)\/\/ll z +a Cijk(ﬁ,rq:)\/\/ll z +—nijk
ijk ijk do
Yoo =1
Moo = -\ /2
(.2
N300 —(Vl - Vz)/3
Naoo = ( Vi + 2V - V3)/4
N =0 ifiork* 0
Evidently the use of VLS can benefit aberrations of the form i00:

Defocus, coma, spherical aberration but not oneswith j, k10
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WHY DO VLS GRATINGSWORK?

The spherical - grating focus condition is now:
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So setting R=%¥, using thegratmg equation and switching to grazing angles a, b
aa +b0 . am- b0 u
1 _cosa- cosb  1sina 1tvr ) swg 53" 2 8 sin?al
r¢  sin’b rsin’b ri * sinb sinbi
1
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Evidently if v :'T thenr¢=-r image T Grating
IDENTICALLY (for all valuesof a, b | 2l b
and thus A. Moreover if, in addition, Source p0|Ar\1t r
Vy = iz then coma and sperical aberration
r Thisworks equally well in converging or diverging
are corrected aswell under the same small - - light (principle of reversibility) although the literature
angle assumption discusses only converging.
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DOESV, = /2, 1' = —r GIVE OPTIMUM FOCUSING? rrree] '
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No - the usual procedure isto write the focus equation twice for two wavelengths of exact focus and solve for r* and v, -
(thisrequires afixed included angle or at least afixed focusing principle) - the nominal focal distance then changes by a
small amount (2% in the above case) - this gives locally better focus although not much improvement over alarge range

Note that all of the design studiesin the literature except one (Koike 1995) consider only fixed-included-angle cases and
offer, sometimes very good, although still approximate solutions but they have SGM-like disadvantages.

Now that the variable-included angle schemes are available we have exact focus solutions such as CL SX 700 or classical
SX700 athough the latter does not give control of the included angle to the user.

Therefore retrofitting VLS to a standard SX700 makes some sense to give user control of the included angle however
note that the focal length or the focal distance of the mirror would have to change.

Conclusion: VL Srole in general-purpose monochromators is becoming minor but it is still strong in spectrographs.
M. R. Howells, Advanced Light Source
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VLS solution with ¢
chosen for maximum
efficiency (between 1.5
and 2.5)

Wavelengths of exact
focus: 20 A and 80 A

Source: size 50 um and
distance 15m

Beam height: 2mm
Inside (+ve) order
1200/mm
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MESPROJECT CALCULATIONS
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MESPROJECT CALCULATIONS
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MESPROJECT CALCULATIONS
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MESPROJECT CALCULATIONS
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Mirror cooling for high heat = .
load at low energy (75eV) r;}_r:] u."

absorbed power density

75eV
—— Cff=1.25, 2theta=167.9
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The rms slope error (nrad) of the pre-

mirror corresponding to a resolving
power R=7500 (FWHM) from the
1501/mm grating.




JENOPTIC SX700 MONOCHROMATOR _AN
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Three gratings

UHV rotary encoder Plane mirror

Grating drive arm

Mirror drive arm
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monochromator olf

New implementation of SX700 . W
‘.

Seal joint below beam height
for alignment access

External sine-bar drives and
linear encoders

Aluminum structural vessel

External grating changer

Lightweight rigid honeycomb
table

6-strut alignment

Heavy pump below bellows on
separate support

Legs filled with epoxy granite
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Monochromator chamber, r::}l 4
vacuum test Oct 2001 1
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monochromator scanning ‘\l
. . . . rrrrrernw ]
mechanism with integral cooling ~————— ‘

Pressure-equalized water feed

Grating carriage with roll and
yaw adjusters for double
grating

Water manifold with no flexing
parts

Double grating
Water lines on sine bar

Invar structural frame

Silicon plane mirror

Pressure equalized water feed
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